
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 1

Deep Multilayer Sparse Regularization Time-
Varying Transfer Learning Networks With

Dynamic Kullback–Leibler Divergence
Weights for Mechanical Fault Diagnosis

Feiyu Lu, Graduate Student Member, IEEE, Qingbin Tong , Xuedong Jiang,
Ziwei Feng, Graduate Student Member, IEEE, Jianjun Xu, and Jingyi Huo

Abstract—Rotating machinery is widely used in indus-
trial production, and its reliable operation is crucial for en-
suring production safety and efficiency. Mechanical equip-
ment often faces the challenge of variable speeds. However,
existing research pays little attention to domain-adaptive
and cross-device diagnostic tasks under time-varying con-
ditions. To fill this research gap and address the serious
domain shift problem in cross-device fault diagnosis tasks
under time-varying speeds, this article proposes a deep
multilayer sparse regularization time-varying transfer learn-
ing network (DMsrTTLN) with dynamic Kullback–Leibler di-
vergence weights (DKLDW). The main contributions and
innovations of DMsrTTLN are as follows: First, a multilayer
sparse regularization module to effectively reduce speed
fluctuations; second, an amplitude activation function to
enhance the differentiation of data with different labels;
third, the kurtosis maximum mean discrepancy, where the
Gaussian kernel function adaptively adjusts according to
the kurtosis values of the data to enhance domain adapta-
tion capability; and finally, the DKLDW mechanism dynami-
cally balances distance and adversarial metrics to improve
model convergence and stability. The DMsrTTLN model
with DKLDW exhibits strong generalization performance in
cross-device domain shift scenarios. Experimental valida-
tion in the same-device and cross-device scenarios is per-
formed on three mechanical machines under time-varying
speeds, and the results are compared with those of six
state-of-the-art approaches. The results showed that the
DMsrTTLN has a better convergence effect and greater di-
agnostic accuracy.

Index Terms—Cross-device, fault diagnosis, maximum
mean diversity (MMD), time-varying, transfer learning.
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I. INTRODUCTION

ROTATING mechanical equipment plays an important role
in production and daily life. An effective fault diagnosis

model can monitor the health status of equipment in real time,
thereby improving equipment reliability [1], [2].

The wave of deep learning technology is sweeping across
the world [3], [4], [5], [6]. Recently, various deep learning
frameworks have been used for fault diagnosis tasks, such as con-
volutional networks for identifying fault size and type [7], graph
neural networks for decoding data structure information, and
generative adversarial networks for solving small sample data
problems. However, most of the above studies were conducted
under the same data distribution. Rotating mechanical equip-
ment is subject to different program settings and task execution
requirements and often operates under variable speed conditions.
Liu et al. [8] noted that existing research on variable-speed faults
can be classified into two categories. In the first category, the
machine operates at several different speeds, but the speed is
constant. In the second category, the rotational speed, known
as the time-varying speed, is nonlinear and varies with time.
Depending on the device source of the data, it can also be further
subdivided into fault diagnosis tasks under the same device and
across devices.

Many scholars have provided numerous solutions for the first
category of the variable speed problem [9], [10], [11], [12]. In
2018, Shao et al. [13] achieved high-precision transfer fault
diagnosis by pretraining and fine-tuning strategies and con-
ducted feasibility verification in a bearing cross-speed scenario.
In 2022, considering the situation where the target domain data
are not visible, Yang et al. [14] proposed a multisource transfer
learning network, which was validated for its effectiveness in a
gear-driven drilling test rig.

To solve the cross-device diagnosis problem at variable
speeds. Guo et al. [7] constructed a deep convolutional transfer
learning network (DCTLN) using maximum mean diversity
(MMD) and domain classification and implemented bearing
migration fault diagnosis tasks between three different de-
vices. Yang et al. [15] reported that distance metrics cannot be
used to solve for joint distribution differences. They explored
a clustering-based conditional distribution to realize cross-
device fault diagnosis and proposed an optimal transportation
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embedded joint distribution similarity measure (OT-JDSM).
Validity verification experiments were conducted on 12 different
datasets. Yang et al. [16] also proposed a deep targeted transfer
learning method, which also achieved cross-device fault diag-
nosis. However, this method utilizes the label information in the
target domain, and the performance of OT-JDSM and DTTL in
scenarios where the target domain data label cannot be used is
questionable.

On the other hand, for the second category of time-varying
speed, there is relatively less research at present. Chang et al.
[17] designed methods involving alternative kernel networks and
squeeze-and-excitation attention. These methods maintain accu-
racy and efficiency in bearing fault diagnosis experiments under
speed fluctuations. Liang et al. [18], to address the domain shift
caused by speed variations, developed a semisupervised sub-
domain adaptation graph convolutional network and performed
feasibility verification on gear and bearing fault datasets under
variable speeds. In the same year, Chen et al. [19], considering
the issue of data scarcity under time-varying speed, proposed
the hybrid augmented network with a balance domain window.
However, those studies were conducted based on issues within
the same device, and the training set data had labels. To our
knowledge, a cross-device model under a time-varying speed
has not been developed thus far. Liu et al. [8] provides a possible
explanation: vibration signals under time-varying speeds exhibit
strong nonstationary characteristics and feature variability. This
results in current intelligent diagnosis models being unable to
identify invariant features, thereby compromising their general-
ization performance. Nevertheless, cross-device fault diagnosis
under time-varying speeds has significant research value for the
health monitoring of mechanical equipment. In comparison to
labeled training set data in the same device issue, the application
scenario of this article in cross-device tasks involves unlabeled
training data in the target domain.

In fault diagnosis tasks based on transfer learning, a key
challenge is how to effectively balance the importance of loss
functions. Many scholars have conducted extensive research
on this issue. Zhou et al. [20] used dynamic weight factors
to adjust the influence of the marginal probability distribution
and conditional probability distribution on the model. When the
value of the weight factor is close to 1, the weight of the marginal
distribution loss function is greater. Conversely, the weight of
the conditional probability distribution loss function is greater.
Liu et al. [21] constructed weight factors based on exponential
functions to balance the importance between distance metric
loss and subdomain adaptation loss. Similarly, Yang et al. [16]
used exponential functions to construct the importance between
divergence loss and triplet loss and applied it to cross-device
fault diagnosis tasks. However, current research lacks in-depth
exploration of the importance of adversarial metrics and distance
metrics. This leads to the possibility that in cross-domain learn-
ing tasks, models may not fully utilize the information between
distance metrics and adversarial metrics, thereby affecting the
performance and generalizability of the model.

In addition, from a technical perspective, the current research
still faces several issues and gaps.

1) The lack of a module that can effectively eliminate speed
fluctuations.

2) The MMD loss function cannot adaptively narrow the
marginal distribution based on the physical information
of the vibration signal. This leads to the inability of the
distance metric to extract effective fault information from
faulty data, restricting the performance of the MMD.

3) The balancing weight factor between the distance and
adversarial metric has not been thoroughly studied.

To address these challenges and fill this research gap, this
article proposes a deep multilayer sparse regularization time-
varying transfer learning networks (DMsrTTLNs) with dynamic
Kullback–Leibler divergence weights (DKLDWs). The DMsrT-
TLN can achieve fault diagnosis under the same device. The
DMsrTTLN consists of three parts: a feature extractor; multi-
layer sparse regularization (MSR); and a classifier. The feature
extractor, which is based on convolutional neural networks,
directly extracts diverse fault features from the raw vibration
signals. MSR eliminates the influence of speed fluctuations from
the perspective of feature regularization, significantly improving
the diagnostic performance of the model. The classifier, which is
based on the amplitude activation function (AAF), uses random
sample activation to enhance the discriminability of features.
For variable speed conditions, combining the DKLDW and
DMsrTTLN methods can achieve high-precision intelligent fault
diagnosis tasks across devices. DKLDW adjusts the weight
values between distance metrics and adversarial metrics from
the perspective of KL divergence, thereby reducing the distance
between the source domain and the target domain data. By
conducting same-device and cross-device fault diagnosis tasks
under variable speed conditions on three different mechani-
cal devices, the effectiveness and superiority of the proposed
method are fully verified.

The primary contributions are as follows.
1) To address the impact of time-varying speed on model

performance, we design the MSR strategy, which consists
of a plug-and-play sparse regularization module. This
means that it can be applied to the feature output layer of
any deep learning model. Ablation experiments demon-
strate that MSR can significantly eliminate the problem
of speed fluctuations.

2) Considering that current activation functions cannot adapt
to vibration signals under time-varying speeds, lead-
ing to inadequate model generalization performance, we
propose a new activation function determined by the
peak-to-peak value of the original signal for activating
the output features. To perform this process flexibly and
avoid manual parameter adjustment, we adopt the random
sample activation method. The results show that under the
proposed activation function, the fault diagnosis accuracy
is improved.

3) The current domain adaptive loss function does not con-
sider the performance improvement effect of kurtosis at
time-varying speeds, resulting in limited model perfor-
mance. A kurtosis-based MMD (KMMD) algorithm is
proposed, which dynamically selects parameters for the
Gaussian kernel function. This approach addresses the
shortcomings of MMD in conditional domain adaptation.
The results show that the proposed KMMD algorithm can
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improve the diagnostic performance of the model in fault
diagnosis tasks from the perspective of kurtosis.

4) Different loss functions may have different weights. We
propose a weight factor based on KL divergence to
address the problem of dynamically balancing distance
domain loss functions and adversarial domain loss func-
tions. Comparative experiments show that under the pro-
posed weight factor, the weight values of loss functions
can be dynamically adjusted.

5) Based on the above algorithms, we construct DMsrTTLN
with DKLDW. Compared to six advanced methods for
cross-speed and cross-device fault diagnosis, the pro-
posed method outperforms the other methods in terms
of all three performance indicators.

Limitations of existing methods are as follows.
1) There is a lack of modules that effectively eliminate the

influence of speed fluctuations, resulting in unstable per-
formance of models under time-varying speed conditions.

2) Traditional activation functions and domain adaptation
methods are insufficient for adapting to speed changes
and differences in data distribution across devices when
dealing with complex industrial data.

3) Existing MMD loss functions cannot adaptively shrink
marginal distributions based on the physical information
of vibration signals, limiting the effectiveness of fault
information extraction.

4) The lack of in-depth research on balancing weight factors
between distance metrics and adversarial metrics leads to
inadequate convergence performance and stability of the
model.

Innovations and necessity of the proposed method are as
follows.

1) The MSR module significantly enhances the robustness
of feature extraction by reducing the interference of speed
fluctuations, addressing the insufficient handling of speed
fluctuations in existing methods.

2) The AAF enhances the differentiation of labeled data,
improves the generalizability of the model, and meets
the vibration signal processing requirements under time-
varying speed conditions.

3) The KMMD method adjusts the parameters of the Gaus-
sian kernel function adaptively, enhancing the domain
adaptation capability and demonstrating excellent perfor-
mance in diagnostic needs across different mechanical
devices.

4) The DKLDW mechanism dynamically balances distance
metrics and adversarial metrics, significantly improving
the convergence performance and stability of the model
and thereby achieving excellent diagnostic results in dif-
ferent time-varying speed and cross-device scenarios.

II. PROBLEM FORMULATION

To clearly understand the fault diagnosis problem be-
ing addressed, we provide descriptions of fault diagnosis
scenarios under time-varying speeds for both same-device
and cross-device scenarios. Same-device scenarios: Let Dm

represent the data from different devices, where m is the machine

Fig. 1. Structural diagram of DMsrTTLN with DKLDW.

type. For fault diagnosis within the same device, Dm_train
train =

{(x(i)
train,y

(i)
train,v

(i)
train}Ni=1 and Dm_test

test = {(x(i)
test,v

(i)
test)}Mi=1 repre-

sent the training and testing set data, respectively. N and M are
the sample sizes, x(i)

train is the ith training sample, y(i)
train is the

corresponding label, and v
(i)
train is the corresponding rotational

speed. Notably, for the first category of variable speed men-
tioned earlier, v(i)

train is a constant, while in this article, v(i)
train is a

time-varying function. This reflects the dynamic changes during
the operation of the machine.

Cross-Device Scenarios: For cross-device fault diagnosis,
Dm_s

S = {(x(i)
s ,y

(i)
s ,v

(i)
s }Ni=1 and Dm_t

T = {(x(i)
t ,v

(i)
t )}Mi=1

represent the source and target domain datasets, respectively.
Unlike the same device, m_s and m_t are different device types.
The task to be accomplished for cross-device diagnosis is, in the
case where v

(i)
s and v

(i)
t are time-varying functions, to achieve

the transfer diagnostic task from Dm_s
S to Dm_t

T .

III. PROPOSED METHOD

The proposed model is shown in Fig. 1. First, vibration signals
are collected from equipment using signal acquisition devices
to create training and testing sets. Second, a basic framework is
established, consisting of three parts: a ResNet18-based feature
extractor; an MSR; and a classifier. The detailed specifications
of each structure are shown in Fig. 1. Subsequently, the basic
framework is applied to perform fault diagnosis on both the same
and different devices. Finally, the trained model is utilized for
testing.

A. Proposed DMsrTTLN With the DKLDW Model

1) Multilayer Sparse Regularization (MSR): Domain shift is
the most significant challenge in cross-device learning. When a
model attempts to migrate from one domain to a completely dif-
ferent domain, due to distribution differences, activated features
may exhibit instability. This instability makes it difficult for the
model to effectively capture the differences between data from
different domains.
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MSR emphasizes regularization on every column of the data
matrix, meaning that each feature is sparsified. Sparsification
is achieved by forcing most elements in the matrix to zero.
Specifically, it promotes high dispersion of data, preventing the
same features from being consistently activated. When features
are consistently activated, models tend to overly rely on these
features, thereby increasing the difficulty of learning under
distributional changes. By enforcing dispersion among features,
MSR ensures that the model can learn more generalized features
even when significant distribution changes occur without being
disrupted by residual features.

We study the problem of data distribution deviation caused by
speed fluctuations from the perspective of data sparsity to reduce
the number of features needed to reduce distribution deviation.
Within the framework of migration learning, we are committed
to solving cross-device tasks. Through MSR processing of the
input data matrix X, we can obtain the feature matrix Y. The
following is the mathematical model of the MSR

Y1 = X/ (f (f (X))) = Xij/

⎛
⎝f

⎛
⎝
√√√√ m∑

k=1

X2
kj + ε

⎞
⎠
⎞
⎠ (1)

Y = Y1/f (Y1) = Yij/

√√√√ m∑
k=1

Y 2
ik + ε (2)

where f =
√∑m

k=1 X
2
kj + ε is the soft absolute value function,

with ε taking the value of 1e-8. The value of εis determined
based on the empirical findings in [22]. The activation functions
in (1) and (2) are specifically designed for row and column
regularization. The activation function plays a crucial role in the
row and column regularization of the MSR [22]. MSR effectively
reduces speed fluctuation interference through the following
mechanisms.

1) Achieving a more uniform distribution in the feature
space to alleviate domain shifts caused by speed fluc-
tuations.

2) Reducing the number of active features to diminish the
impact of speed fluctuations on feature representation.

3) Ensuring high dispersion of features to minimize the
sustained impact of speed changes on feature activation.

2) Amplitude Activation Function (AAF): Under time-
varying speeds, the amplitudes of fault signals also exhibit
corresponding time-varying characteristics [8], and the
amplitude modulation characteristics of fault signals are
variable. This poses a challenging problem for existing models
based on constant speed with inherent amplitude modulation
characteristics. Additionally, most activation functions do not
specifically extract invariant features from time-varying speed
signals. Considering the potential impact of speed fluctuations
on deep learning models based on amplitude, we developed an
AAF. This function dynamically and randomly activates the
output features of the model, determining which feature values
can be scaled, thereby expanding the feature distances under
different labels. The mathematical model for AAF is as follows.

Assuming the original data are X, with N samples and m1
data points, after feature extraction by the model, we obtain the
data matrix Ywith N samples and m2 data features. First, the

peak-to-peak value for each sample is calculated

Ai = max (Xij)i −min (Xij)i (3)

Xij represents the jth data point of the ith sample. Then, to
randomly select the positions of the activated features, k smaller
Ai corresponding positions are identified

K = argmin(Ai)i, K = {k1, k2, . . . , kk} (4)

k ∼ Uniform(a, b) (5)

where k follows a uniform distribution, which ensures that the
number of activated features is randomly selected. In this article,
the values of a and b are 10 and 20, respectively. The data feature
set corresponding to k is given as

YK = {Yk1 , Yk2 , . . . , Ykk
}. (6)

The AAF mathematical formula is as follows:

Y =

{{Yk1 , Yk2 , . . . , Ykk
} × ζ, k

Y, not k
(7)

ζ is a deflation factor taking the value of 5e-2. The dynamic
activation function based on magnitude can be realized by (7).

The advantages of the AAF over traditional activation func-
tions are as follows.

1) Dynamic Adaptation: The AAF can dynamically adjust
the activation strength based on the amplitude character-
istics of the input signals, allowing the model to better
adapt to amplitude changes under time-varying speeds.

2) Introduction of Randomness: By randomly selecting the
number of activated features (k value), the AAF enhances
model robustness and generalizability, reducing the risk
of overfitting.

3) Preservation of Amplitude Information: The AAF incor-
porates the amplitude information (peak-to-peak value)
of the original signal into the activation process, ensuring
that crucial amplitude-related information is preserved
during feature extraction.

How AAF promotes the differentiation of data with different
labels.

1) Expansion of Feature Distances: AAF expands the dis-
tance between different labeled data in the feature space
by randomly activating subsets of features, thereby en-
hancing the ability to recognize different fault types.

2) Increased Feature Dispersion: By introducing a uniform
distribution, the AAF enhances model randomness and
dynamics, increasing feature dispersion. This reduces
overlap among features of different categories, thereby
improving the ability to distinguish labeled data of differ-
ent fault types.

3) Kurtosis Maximum Mean Discrepancy (KMMD): Deep
transfer learning models typically require an essential distance
metric. The MMD is a classical metric used to quantify the
distance between two random distributions. MMD minimizes
the distance within the reproducing kernel Hilbert space F , as
shown in

MMD[F , P,Q] = sup
f∈F

(Exs
[f(xs)]−Ext

[f(xt)]) . (8)
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In accordance with statistical theory [23], a biased2 empirical
estimate is employed for simplification (10). Consequently, the
MMD loss function can be ascertained.

LMMD[F , P,Q]=sup
f∈F

(
1
N

N∑
i=1

f
(
x(i)
s

)
− 1
M

M∑
i=1

f
(
x
(i)
t

))
(9)

whereF represents a class of functions, sup (∗) is the supremum,
and E∗ signifies the expectations derived from the domain
distribution.

Subsequently, xs and xt are mapped into F constructed by
a Gaussian kernel function, resulting in the mapping functions
φ : X → H, and (9) can then be rewritten as

MMD (Φxs Φxt) =
1

m (m− 1)

m∑
i=1

m∑
j �=1

k (φ (xs
i ) , φ (xs

i ))

+
1

n (n−1)

n∑
i=1

n∑
j �=1

k
(
φ
(
xt
j

)
, φ
(
xt
j

))

− 2
mn

m∑
i=1

n∑
j=1

k
(
φ (xs

i ) , φ
(
xt
j

))
(10)

where Φxs = {φ(xs
i )}mi=1, Φxt = {φ(xs

i )}ni=1.
Considering that the Gaussian kernel function can map data

into a space of infinite dimensions, exhibiting strong nonlinear
mapping capabilities, most kernel functions opt for the Gaus-
sian kernel. However, the Gaussian kernel possesses a crucial
adjustable parameter that influences the probability distribution
after data mapping. Current methods often use the Euclidean
distance to determine this parameter. However, for vibration
data under time-varying speeds, even for data with the same
label, the Euclidean distance can vary over time. This may lead
to the instability of MMD performance, as confirmed by the
ablation experiments below. To address this, we use kurtosis
values independent of speed as dynamic parameters for the
Gaussian kernel. Specifically, for both the source and target
domains, we use the difference in their kurtosis values as the
kernel parameter. When the kurtosis values differ significantly,
the Gaussian kernel is smaller, indicating a greater distance
between the two distributions. Conversely, when the kurtosis
values of two distributions are close, the Gaussian kernel value
is larger, reflecting a smaller distance for both distributions. The
mathematical model is as follows:

K
(
xs, xt

)
= exp

(
−‖xs − xt‖2

2σ2

)
(11)

σ =

n∑
i=1

Δkurt =

n∑
i=1

|kurtx − kurty|

=
n∑

i=1

∣∣∣∣∣∣
E
[
(X − μx)

4
]

σx
4

−
E
[
(Y − μy)

4
]

σy
4

∣∣∣∣∣∣

=
1
n

n∑
i=1

∣∣∣∣∣∣∣∣∣
n∑

i=1

(
xs
ij − 1

d

∑d
j=1 x

s
ij

)4

(
1
d

∑d
j=1

(
xs
ij − 1

d

∑d
j=1 x

s
ij

)2
)2

−
n∑

i=1

(
xt
ij − 1

d

∑d
j=1 x

t
ij

)4

(
1
d

∑d
j=1

(
xt
ij − 1

d

∑d
j=1 x

t
ij

)2
)2

∣∣∣∣∣∣∣∣∣
(12)

where n is the number of samples and d is the length of the
feature vector. xij represents the value of the ith sample in
the jth dimension. kurtx represents the kurtosis corresponding
to the source domain, E denotes the expectation, and μx and σx

denote the mean and variance of X, respectively. The expression
of the KMMD is as follows:

LKMMD = KMMD (Φxs ,Φxt)

=
1

m (m− 1)

m∑
i=1

m∑
j �=i

K
(
φ (xs

i ) , φ
(
xs
j

))

+
1

n (n− 1)

n∑
i=1

n∑
j �=i

K
(
φ
(
xt
i

)
, φ
(
xt
j

))

− 2
mn

m∑
i=1

n∑
j=1

K
(
φ (xs

i ) , φ
(
xt
j

))
(13)

where K is a kurtosis-based Gaussian kernel, as shown in (11).
Combining (11)–(13), it can be observed that the Gaus-

sian kernel function K(xs, xt)varies with kurtosis kurtx and
kurtyvariance. As the difference σ in kurtosis increases, the
value of the Gaussian kernel functionK(xs, xt) decreases, indi-
cating an increase in the difference between the distributions of
the two datasets. Simultaneously, the difference functionLKMMD

between the data will automatically adjust, thereby reducing
the distribution distance between different domain data and
achieving domain adaptation functionality.

The advantages of the KMMD compared to the traditional
MMD.

1) Adaptive Adjustment of Gaussian Kernel Parameters:
Traditional MMD methods typically use fixed Gaussian
kernel parameters, which cannot adapt to changes in data
distribution under time-varying speeds. KMMD, how-
ever, dynamically adjusts the Gaussian kernel parame-
ters, enabling better capture of distribution differences
between different domains and thereby enhancing the
model’s domain adaptation capability.

2) Parameter Selection Based on Physical Information: The
KMMD uses the kurtosis values of vibration signals as
kernel parameters. Kurtosis values can reflect the am-
plitude and shape characteristics of signals, providing
stability and robustness. Therefore, the KMMD can more
accurately measure distribution differences between the
source and target domains, improving the fault diagnosis
performance.

3) Improved Domain Adaptation Performance: By introduc-
ing kurtosis values as dynamic parameters, the KMMD
can better handle changes in data distribution at varying
speeds, reduce distribution bias during domain migration,
and thereby enhance generalizability and stability.

4) Dynamic KL Divergence Weights (DKLDW): When there
is a significant difference in distribution between two domains,
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such as in cross-device fault diagnosis, aligning data distribu-
tions often requires adversarial domain metrics to encourage the
model to find similar features. It is mathematically modeled as
follows:

Ladv = − 1
n

n∑
i=1[

di log
1

Gd (Gf (xi))]
+ (1 − di) log

1
Gd (Gf (xi))

]
.

(14)

Let Gd be the domain classifier, Gf be the feature extractor,
xi be the input data, di be the corresponding domain labels,
di = 0 denote the source domain, and di = 1 denote the target
domain. The domain adversarial loss function is a binary cross-
entropy loss function. The smaller its value is, the better the
classification performance of Gd and the poorer the adversarial
performance of Gf . Conversely, the larger its value is, the
worse the classification performance of Gd and the better the
adversarial performance of Gf .

Combining (13) and (14), we obtain

Ldomain = LKMMD + Ladv. (15)

Most research does not consider the interactive relationship
between LKMMD and Ladv. We have observed that there is no
effective dynamic weighting term for balancing marginal and
adversarial distributions. The widely applied strategy is based
on epoch-based dynamic weighting. However, in cross-device
tasks under time-varying speeds, where the degree of domain
shift changes over time, this strategy may become ineffective.
Therefore, we propose a dynamic KL divergence weight update
strategy, termed DKLDW.

First, we compute the feature vectors after xs and xt through
Gf . The corresponding KL divergence is calculated as follows:

KL (P ‖Q ) =
∑
x∈X

P (Gf (x
s)) log

P (Gf (x
s))

Q (Gf (xt))
. (16)

P and Q are the distributions of Gf (x
s)and Gf (x

t), respec-
tively. Second, let μ = KL(P ‖ Q) be the dynamic weighting
factor, which is introduced into (16) to obtain as

Ldomain = (1 − μ)LKMMD + μLadv. (17)

DKLDW mechanism and its impacts the following.
1) Dynamic Adjustment Strategy: According to (17), as the

feature vectors correspond to larger KL dispersion, the
entropy-based data similarity is lower, and larger weights
make the model more focused on the discriminative prop-
erties with respect to the output features. Conversely, as
μ decreases, the model places more emphasis on aligning
the data in the Gaussian kernel space. Through this dy-
namic linkage strategy, the distance and the adversarial
domain metric are jointly used for training, thus improv-
ing the training stability and accuracy of the model, as
confirmed in the experimental section.

2) Impact on Model Convergence Performance: By dynam-
ically adjusting weights μ, DKLDW finds a balance be-
tween feature alignment and discriminative preservation.
This equilibrium accelerates the model’s convergence

to effective feature representations, thereby improving
training efficiency.

3) Impact on Model Stability: The DKLDW adapts to do-
main shifts induced by varying speeds, mitigating po-
tential instability from fixed weights. This reduction in
training oscillations enhances overall stability.

4) Advantages over Traditional Methods: Epoch-based dy-
namic weight strategies struggle with domain shifts at
varying speeds. Using real-time computed KL diver-
gence, DKLDW more accurately reflects current domain
differences, making more suitable adjustments.

B. Training Process

The details of the proposed DMsrTTLN with DKLDW are
shown in Fig. 1, and its overall optimization objective consists
of two parts: supervised learning and domain adaptive learning
based on DKLDW. The effect of the cross-entropy loss function
in supervised learning is well documented

LC = − 1
N

N∑
n=1

C∑
c=1

y(n)c log
exp

(
ŷ
(n)
c

)
∑C

c̃=1 exp
(
ŷ
(n)
c̃

) (18)

where N represents the quantity of samples and C denotes the
sample category. y(n)c is a symbolic function. When the genuine
category of sample n corresponds to c, a value of 1 is assigned;
otherwise, a value of 0 is assigned. Additionally, ŷ(n)c signifies
the characteristic value of the nth sample in FC2 associated with
the c label.

Combined with (17), the overall loss is shown as

LAll = LC + Ldomain = LC + (1 − μ)LKMMD + μLadv. (19)

Assuming that θf θd and θc are the parameters of Gf , Gd and
classifier Gc, the parameter update formula is as follows:

θf = θf − λ
∂LAll

∂θf
(20)

θd = θd − λ
∂LAll

∂θd
(21)

θc = θc − λ
∂LAll

∂θc
(22)

where ∂ is the partial derivative formula and λ is the learning
rate. The training procedure of the proposed DMsrTTLN for
cross-device tasks is described in Algorithm 1.

IV. EXPERIMENTAL STUDY

A. Dataset Descriptions

1) Dataset A: This dataset was collected from the Spec-
traQuest machinery fault simulator (MFS-PK5M) experimental
platform at the University of Ottawa [24]. The ac drive powers
the motor rotation, and the acceleration sensor (ICP accelerom-
eter, Model 623C01) collects vibration signals from directly
above the tested bearing. There are five bearing health states:
normal (NC); outer race fault (OF); inner race fault (IF); rolling
element fault (BF); and combined fault (IOBF). The speed varies
over time, either increasing or decreasing.
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Algorithm 1: The Training Process for DMsrTTLN on
Case2.

Input:
-Building the basic skeleton, based on ResNetl8.
-Initial feature extractor Gf , discriminator Gp and a
classifier Gc.
-The source domain Dm_t

T = {(x(i)
t ,v

(i)
t )}Mi=1 and the

target domain Dm_t
T = {(x(i)

t ,v
(i)
t )}Mi=1.

-learning rate, batchsize, number of iterations, and
Radam optimizer.

1: for number of iterations do
3: Calculate the classification loss using (18):
4: Calculate the domain adaptation loss with (17);
5: Obtain the overall objective with (19);
6: Train and update model parameters with (20)–(22);
7: eud for
Output: The trained diagnosis model.

TABLE I
THREE BEARING DATASETS

2) Dataset B: This dataset comes from the bearing test
platform at Hanoi University of Science and Technology [25].
The vibration signals from the bearings are collected through
the NI-9234 analog-to-digital conversion module. The tested
bearings have a total of seven states: NC; OF; IF; and BF, inner
race outer race fault (IOF), inner race rolling element fault (IBF),
and outer race rolling element fault (OBF). The speed increases
from 0 to approximately 1500 r/min.

3) Dataset C: This dataset comes from the SpectraQuest
(VSQ) test platform at Xi’an Jiaotong University [26]. The
CoCo80 device collects vibration signals from the NSK6203
tested bearing under three health states, namely, NC, OF, and IF.
The fault sizes are 12 mm2 and 2 mm. The speed decreases from
3000 r/min to 0. Details of the data are given in Table I. The
time-varying speed conditions of the three datasets mentioned
above are all achieved by changing the speed.

B. Diagnosis Tasks and Implementation Details

In the three time-varying speed fault datasets mentioned
above, two different fault diagnosis cases are conducted under
two scenarios: cases 1 and 2. The hyperparameter settings in-
clude a batch size of 128, 100 iterations, an L2 weight decay of
5e-1, and the Radam optimizer with a learning rate of 2e-3. The
sample lengths, quantities, and test set proportions are given in
Table II. The experimental results represent the average of five
runs. Three performance metrics, namely, the accuracy (ACC),
F1-score (F1), and average area under the receiver operating

TABLE II
DIAGNOSTIC TASKS AND IMPLEMENTATION DETAILS

TABLE III
PERFORMANCE STATISTICS RESULTS

characteristic curve (AUC) [27], were utilized to assess the
testing outcomes of the proposed method and the comparative
methods.

C. Case1: Time-varying Speed Fault Diagnosis With the
Same Equipment

Three relevant methods are employed for performance com-
parison with the proposed method. N/O represents the model
without the MSR module, TICNN is the baseline compari-
son model for domain adaptation under the same device, and
DTCNN is the model under variable-speed conditions [27].
Model details can be found here. (https://github.com/John-520/
DMsrTTLN). The statistics for the three performance metrics
and training times are given in Table III. Clearly, the DMsrTTLN
demonstrates a significant advantage in diagnostic effectiveness,
while the computation time is constrained by the number of
weight parameters, resulting in an average time higher than
that of the TICNN and DTCNN. The accuracy of the N/O
method is lower than that of DMsrTTLN, directly indicating
the effectiveness of the proposed MSR module.

D. Case2: Time-Varying Speed Cross-Device Fault
Diagnosis With Different Equipment

1) Compared Approaches: To fully explore the overall per-
formance of the DMsrTTLN in cross-device tasks, it is compared
with several state-of-the-art domain adaptive models. The details
are given as follows.

a) Maximum mean square discrepancy (MMSD) [28]: This
is a novel discrepancy metric function proposed by Qian
et al., which comprehensively considers the mean and
variance information, enhancing domain confusion. The
parameters used in this article are consistent with those
used in the original paper.

b) Joint distribution adaptation (JDA) [29]: The JDA model,
proposed by Han et al., is a joint distribution adaptation
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model. The difference lies in JDA’s use of static joint
marginal and conditional distributions. In the following
sections, it is applied to cross-device fault diagnosis tasks.
The parameters and model configuration remain consis-
tent with those in the original paper.

c) DCTLN [7]: The DCTLN was proposed by Guo et al.,
with high recognition and numerous citations. Similarly,
the model and hyperparameters remain consistent with
those in the original paper.

d) Deep adversarial subdomain adaptation network
(DASAN) [21]: DASAN is a model that considers
subdomain alignment and has been validated for
cross-device diagnosis tasks. The model settings are
consistent with those in the original paper.

e) Deep discriminative transfer learning network (DDTLN)
[30]: This domain adaptation model, which was newly
proposed for cross-device tasks, enhances the mechanism
for aligning conditional distributions.

f) Deep dynamic adaptive transfer network (DDATN) [20]:
This model balances the marginal and conditional dis-
tributions with a dynamic weighting factor, but requires
label information from the target domain. For fairness,
the experiments in this article are all conducted in an
unsupervised manner in the target domain.

In addition to the latest methods mentioned above, we also
employ five ablation versions corresponding to the proposed
method. All methods are conducted under the same baseline.

1) Version_1: A variant of the proposed method, removing
the MSR module while keeping other configurations con-
sistent with DMsrTTLN.

2) Version_2: Compared to the proposed DMsrTTLN, the
AAF is removed.

3) Version_3: Compared to the DMsrTTLN, the KMMD is
replaced with the MMD to test the performance of the
KMMD.

4) Version_4: The dynamic KL divergence weight is re-
moved to test the effect of the proposed dynamic weight-
ing.

5) Version_5: The dynamic KL divergence weight is re-
moved, and a popular epoch-based dynamic weighting
is used for testing.

2) Results: Table IV gives the statistical results of all meth-
ods on three performance indicators.

Among the six advanced comparative methods, JDA has
an average diagnostic accuracy of 81.35%, showing the best
performance, while the average accuracy for the other five
methods is approximately 70%. In addition, version_1 and ver-
sion_4 represent ablation experiments for MSR and DKLDW,
respectively. Comparative analysis revealed that the diagnos-
tic performance improvement of these two modules was most
evident, confirming the effectiveness of the proposed modules.
This is also the main reason for naming the method. Overall,
the proposed DMsrTTLN performs the best in cross-device
tasks under time-varying speed conditions, achieving an average
diagnostic accuracy of 98.53%.

3) Convergence Curves and Feature Visualization: To test
the convergence performance of all methods, we take the A→C
task as an example. The ACC on the test set for each method is

TABLE IV
PERFORMANCE STATISTICS RESULTS

Fig. 2. Accuracy convergence curves for each method.

Fig. 3. t-SNE visualization results for task A→C. (a)–(f) Six advanced
methods. (g)–(k) Five ablation methods. (l) Proposed DMsrTTLN model.

shown in Fig. 2. The proposed DMsrTTLN model exhibits the
best convergence performance. The ACC of JDA fluctuates by
approximately 65%, and the other methods also show varying
degrees of fluctuation, indicating poor training stability. Fig. 3
presents the feature visualization results for each method on
the test set. The feature distribution labels for version_1 do not
correspond, indicating a lack of ability of the model to recognize
time-varying features, which indirectly reflects the regulariza-
tion effect of MSR. Overall, the proposed model demonstrates
superior clustering performance.
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Fig. 4. Visualization results of unit ball surface features. (a)–(f) Six
advanced methods. (g)–(k) Five ablation methods. (l) DMsrTTLN model.

Fig. 5. Dynamic weight distribution of the DMsrTTLN training process.

4) Role of Multilayer Sparse Regularization: To investigate
the role played by the proposed MSR, we conducted an analysis
of the input features to the last linear layer for the 12 models in the
C→B task. The input feature data for all models are uniformly
scaled to the surface of a unit sphere, as shown in Fig. 4.

Fig. 4(a)–(f) depicts the results of six advanced methods.
These methods exhibit low feature clustering on the sphere, in-
dicating limitations in feature extraction and domain adaptation.
Fig. 4(g) shows the results of the version_1 model without using
MSR, demonstrating poorer feature clustering due to the absence
of MSR. Fig. 4(h)–(l) correspond to methods that utilized MSR.
These figures clearly demonstrate the regularization effect of
MSR, showing higher feature clustering and indicating that
MSR effectively enhances feature discriminability and domain
adaptation capability. Fig. 4(l) displays the results of our pro-
posed DMsrTTLN model, which achieves the best clustering
effect, highlighting its superior performance in cross-device
fault diagnosis tasks under time-varying speeds.

5) Role of Dynamic KL Divergence Weights: To further in-
vestigate the role of the DKLDW in model training, the dynamic
weight factors and in the six migration tasks are visualized,
as shown in Fig. 5. The weight distribution for each task is
distinct, displaying dynamic variations. Overall, as the number
of iterations increases, 1 − μgradually decreases, while μ in-
creases. This phenomenon has significant implications for model
training: a decrease in 1 − μ indicates that the model gradually
reduces its focus on the marginal distribution differences be-
tween the source and target domains. An increase in μ signifies
that the model increasingly focuses on differentiated features
across devices, helping alleviate the impact of domain shifts.

This process can be explained by the fact that a smaller
adversarial loss would result in lower feature similarity, leading
to an increase in the KL divergence. This positive feedback to
μprompts the model to learn in the direction of higher feature
similarity, ultimately mitigating the impact of domain shift. This
aligns with the theoretical analysis in the foregoing section.
DKLDW enables the model to adaptively adjust weights accord-
ing to task characteristics during training, thereby enhancing

Fig. 6. Results of the noise resistance analysis for DMsrTTLN.

Fig. 7. Results of AAF parameter analysis.

the fault diagnosis performance under cross-device and time-
varying speed conditions.

6) Noise Resistance Analysis of DMsrTTLN: Early fault fea-
tures are often weak and can be easily masked by noise or other
nonfault-related signaling components. To investigate whether
MSR is prone to neglecting fault features under noise interfer-
ence, we conducted noise resistance experiments on DMsrTTLN
with and without MSR. The experimental results are shown in
Fig. 6. Regardless of the presence of MSR, as the noise energy
increases, the diagnostic performance of the model decreases.
With the MSR, the DMsrTTLN achieves a diagnostic accuracy
of less than 90% when the signal-to-noise ratio is less than or
equal to 0. This indicates that in the presence of strong noise, the
MSR algorithm may also neglect early fault features. However,
compared to DMsrTTLN without an MSR, DMsrTTLN with
an MSR demonstrates better diagnostic performance, indicating
that an MSR exhibits a certain degree of noise resistance.

7) Parameter Analysis of AAF: According to (7), the AAF
is a type of data mapping operation algorithm. In this section,
we conduct a parameter sensitivity analysis of the AAF. First,
we determine the range of the scaling parameter ζ to be [5e-3,
5e-2, 1e-2, 5e-1, 1e-1]. The range of parameters a and b is set
to [5, 10, 15, 20, 25, 30], where a should be less than b. Thus,
there are 15 possible combinations for (a, b). For case 2, we used
the grid search method to determine the parameter combination
corresponding to the maximum diagnostic accuracy. The results
of the grid search are shown in Fig. 7. It can be observed that
different parameter values correspond to different diagnostic
accuracies. Overall, the AAF is not very sensitive to parameter
values, indicating the robustness of the AAF. Nevertheless, the
AAF can achieve maximized model performance through simple
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Fig. 8. Comparison of the diagnostic effects of different methods.

Fig. 9. The Gaussian kernel value σ change graph of the KMMD and
MMD.

parameter optimization strategies, demonstrating its practical
value.

8) Advantage Analysis of the KMMD: To further explore the
internal parameter variations and advantages of the proposed
KMMD algorithm, for case 2, we compared the classification
models based on kurtosis values and those based on MMD.
The results are shown in Fig. 8. The classifier of DMsrTTLN
is considered a classification model based on kurtosis values
(Version_kurtosis), with the input data being the kurtosis values
corresponding to the original data. Version_3 in the comparative
methods is regarded as the model based on the MMD. The
diagnostic performance of the KMMD is superior. Furthermore,
we visualized the variations in the kernel functions inside the
KMMD and MMD for the A→B task in case 2, as shown in
Fig. 9. To highlight the relative change trend of the data, the
ordinate of Fig. 9 is a logarithmic coordinate with a base of 10.
Clearly, the parameter σ variations corresponding to the KMMD
and MMD are different. A larger value of σ indicates smaller
domain differences in the KMMD. This indicates that under the
influence of the KMMD, the feature differences between the
source domain and the target domain data are reduced.

9) Comparison With Related Work on Time-Varying Speed:
To demonstrate the superiority of the proposed method in trans-
fer learning under time-varying speed conditions, we compare it
with the current mainstream speed elimination algorithm, order
tracking (OT). We constructed two fault diagnosis models based
on OT preprocessing, OT-JDA and OT-DASAN, and tested
them in the case 2 scenario. Fig. 10 shows that the proposed
method achieves the best diagnostic performance, indicating its
superiority in cross-device fault diagnosis under time-varying
speed conditions.

Fig. 10. Comparison of the effects of different methods.

V. CONCLUSION

In this article, a novel time-varying speed mechanical fault
diagnosis method, named DMsrTTLN with DKLDW, was pro-
posed. The MSR in DMsrTTLN can eliminate interference from
speed fluctuations, thereby significantly improving the model’s
performance. In domain adaptive tasks across devices, the de-
veloped KMMD metric can automatically select appropriate
kernel functions from data, thereby unleashing the potential of
MMD. Additionally, the proposed DKLDW demonstrates ex-
cellent capabilities in balancing distance and adversarial domain
metrics, playing a crucial role in enhancing the training stability
and diagnostic accuracy of the model. The experimental results
also demonstrate the high performance of the proposed fault
diagnosis method. In the future, we believe that models based
on the DMsrTTLN can play a greater role in time-varying speed
fault diagnosis tasks.

Although the proposed DMsrTTLN method has demonstrated
the best diagnostic performance in various time-varying speed
scenarios defined in this article, its ability to identify small and
unbalanced samples or unknown fault types may be limited,
leading to a decrease in diagnostic performance. Subsequent
research will focus on improving the model structure, exploring
few-shot learning methods, and expanding the generalization
ability to fault types.
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