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A B S T R A C T   

In recent years, deep transfer models have addressed the issue of distribution shift between the 
source and target domains by learning domain-invariant features. However, in cross-machine 
fault diagnosis scenarios, existing deep learning models struggle to fit the conditional distribu-
tion of target domain samples, limiting the performance and generalization of domain adaptation 
models. To address these problems, we propose a deep targeted transfer network with clustering 
pseudo-label learning (DTTN-CPLL). DTTN-CPLL consists of three parts. First, a deep transfer 
network is constructed to extract cross-domain features. To reduce the intra-class distribution 
gap, a clustering pseudo-label learning algorithm is proposed to create subdomain labels within 
the target domain features. Then, we simultaneously minimize and maximize the entropy of 
features and the number of linearly independent vectors in the target domain to reduce the 
distance between subdomain features. Finally, under the constraint of local maximum mean 
discrepancy, we reduce the distribution discrepancy between the source and target domains at the 
subdomain feature level. We conducted 12 cross-machine transfer tasks on three open bearing 
datasets and a private high-speed train traction motor bearing dataset. The results demonstrate 
that, compared to other state-of-the-art models, DTTN-CPLL is effective and superior in cross- 
machine fault diagnosis.   

1. Introduction 

Intelligent fault diagnosis has received sufficient attention in many industrial scenarios, such as energy power, aerospace, and rail 
transit [1–4]. Condition monitoring and fault diagnosis are important measures to prevent major accidents and ensure the safety of life 
and property [5]. 

With the rapid development of deep learning, intelligent fault diagnosis models, such as autoencoders [6], convolutional neural 
networks [7–9], etc., have been recognized by more and more scholars. Unlike traditional methods based on fault diagnosis knowl-
edge, intelligent fault diagnosis can automatically learn the underlying diagnosis knowledge from massive data, greatly reducing the 
time for expert knowledge to be deployed in the model and improving efficiency. 

In practical engineering applications, the monitored data often lack sufficient labels, which poses a greater challenge to the training 
of the model [10]. To solve this problem, transfer learning technology is introduced into fault diagnosis. In the field of transfer 
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learning, the source domain represents a dataset with sufficient labels, and the target domain represents a dataset with few labels or 
even no labels. How to use the existing label information to transfer the source domain data knowledge to the target domain is the main 
task of transfer learning [11,12]. In the existing research on bearing fault diagnosis, transfer learning is mainly used to solve two tasks: 
1) Cross-operating conditions: domain transfer tasks of the same machine under different operating conditions. (2) Cross-machines 
[13]: domain transfer tasks of different machines under different operating conditions. 

In addressing the domain transfer task under different operating conditions for Task 1), researchers have employed various stra-
tegies and methods to reduce the distribution differences in data. The primary challenge of cross-condition transfer lies in the fact that 
the data distribution of the same machine may change under different environmental and load conditions. This variation can be caused 
by factors such as temperature, humidity, speed, load, and various variable operating parameters. To tackle this issue, multiple transfer 
learning techniques have been proposed. They focus on minimizing the distribution differences between the source domain (a dataset 
with known conditions and labels) and the target domain (an unlabeled dataset under new operating conditions). Several models or 
loss functions have been introduced, including maximum mean discrepancy (MMD) [14,15], correlation alignment (CORAL) [16], 
joint MMD (JMMD) [17], Local MMD (LMMD) [18], adversarial loss [19], and have been successfully applied to fault diagnosis tasks. 

For Task 2), the core challenge of cross-machine transfer tasks lies in the potential significant differences in feature distribution 
among monitoring data from different machines. Due to the heterogeneity of data from different machines, such as varying sampling 
frequencies, load conditions, and bearing characteristics, the cross-machine transfer task becomes complex. For instance, two identical 
bearing models operating under different temperature and humidity conditions may exhibit vastly different wear patterns and damage 
processes, causing significant differences at the data level, thereby affecting the transfer and generalization of fault diagnosis models. 

Facing this challenge, unsupervised domain adaptation techniques offer researchers a new approach [20,21]. It aims to explore a 
strategy to bridge the feature distribution differences between the source domain (labeled data) and the target domain (unlabeled 
data). Unsupervised domain adaptation methods typically achieve domain alignment between the source and target domains in the 
feature space, allowing the model to extract more generalized feature representations. Common unsupervised domain adaptation 
algorithms include but are not limited to domain adversarial neural networks (DANN) and feature alignment-based transfer learning 
frameworks. 

On the other hand, weakly supervised learning [22] takes a different path in transfer learning, allowing the utilization of relatively 
sparse or incomplete annotation information in the target domain. In this setting, the model is pre-trained based on sufficient 
annotation information from the source domain and fine-tuned using limited annotation data from the target domain. Weakly su-
pervised transfer learning is particularly important in practice since fully labeled datasets are often unrealistic in many real-world fault 
diagnosis scenarios. Guiding and optimizing the model based on a small number of labeled samples is feasible. 

In summary, unsupervised domain adaptation techniques attempt to transfer information without relying on target domain labels, 
while weakly supervised learning methods seek to maximize the use of limited fault annotation information in the target domain. The 
fault diagnosis scenario set in this paper falls within the weakly supervised learning category. Weakly supervised learning aims to 
enhance transfer effects by utilizing partial label information or easily obtainable auxiliary information, such as fault category labels, 
leveraging limited labeled information and abundant unlabeled data to improve the accuracy of cross-machine bearing fault diagnosis. 

The remainder of the article is structured as follows: In Section 2, we discussed related work, including introductions to the state-of- 
the-art methods. In Section 3, we give the problem definition. In Section 4, the proposed fault classification framework is presented. 
Details of four bearing datasets and the corresponding experimental results are presented in Section 5. Section 6 is the conclusion. 

2. Related works 

To address the issue of cross-machine fault diagnosis, we summarized the current state-of-the-art algorithms from the perspectives 
of unsupervised domain adaptation and weakly supervised learning, highlighting their overviews and weaknesses. Based on this 
analysis, we then introduced the problems addressed by the proposed method in this paper and outlined its contributions. 

Unsupervised domain adaptation means that when the source domain data label is known and the target domain data label is 
unknown, the domain adaptive paradigm in transfer learning is used to map the source domain and target domain features to the same 
space, to achieve feature transfer [23]. Yang et al. [24] realized the transfer of laboratory bearing data to locomotive bearing data by 
using multi-layer MMD and pseudo-label learning algorithm. Guo et al. [25] proposed deep convolutional transfer learning network 
(DCTLN) by combining MMD and conditional recognition loss function. The model realizes cross-testing in three different bearing 
datasets, and the better diagnostic accuracy proves that the unsupervised cross-machines transfer method is feasible. Considering the 
alignment of data with the same label in subdomains, Liu et al. [26] proposed the deep adversarial subdomain adaptation network 
(DASAN), which integrates domain adaptation, domain adversarial, and pseudo-label algorithmic functions, and has been validated in 
both cross-speed and cross-machines tasks. Although the unsupervised domain adaptive method is robust to some extent, when the 
data structures of the source domain and target domain differ greatly, negative transfer is likely to occur, which cannot meet the 
requirements of the intelligent fault diagnosis model for strong generalization capability. 

Weakly supervised learning can alleviate the above problems. It refers to that only a small number of data labels in the target 
domain are known, and the model is trained with a large number of source domain data, so as to realize the diagnosis task from the 
source domain to the target domain. Based on the deep transfer learning model, Li et al. [27] realized the alignment of features in the 
source domain and the target domain through adversarial training, which was verified in bearing and coupling data. However, this 
method requires a large amount of label data in the target domain. To fit the distribution of target domain data, Yang et al. [28] 
proposed an optimal transport embedded joint distribution similarity measure (OT-JDSM) and applied it to transfer learning tasks on 
six different bearing datasets, among which, it is assumed that 5 % of the data labels in the target domain are known. Han et al. [29] 
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proposed a modified convolutional neural network (MCNN), and validated it in three different types of gearbox fault data by using 
parameter transfer strategy. In addition, the authors discussed the influence of the number of labeled data in the target domain (512, 
256, 128, 64, and 32) on the performance of the model. 

In the above work, there are still the following two problems: 1) The unsupervised domain adaptation method focuses on the 
subdomain adaptation problem, but ignores the inherent differences between the target domain and the source domain at the feature 
level, making it impossible to fully fit the data distribution in the target domain. Moreover, the use of pseudo-labels instead of real 
labels leads to poor feature alignment or even negative transfer [30]. 2) Most weakly supervised adaptive methods rarely consider the 
case of a single label in the target domain, so the overall performance of the weakly supervised model under very few labels is 
questionable. 

To solve the above problems, this paper proposes a deep targeted transfer network with clustering pseudo-label learning (DTTN- 
CPLL) under the framework of weakly supervised learning. The model consists of feature extractor, label classifier and multiple loss 
functions. The feature extractor and the label classifier parameters are shared, the feature extractor automatically extracts the feature 
vectors of the source domain and the target domain, and the label classifier clusters similar features. Specifically, firstly, the source and 
target domain data from different devices are transformed from the time domain to the frequency domain. Then, a feature extractor 
based on a six-layer convolutional structure is constructed to extract common features from the frequency domain data. We develop a 
dynamic pseudo-label learning algorithm and embed it into a semi-supervised learning framework. Finally, the proposed domain 
adaptation loss function is utilized to reduce the distance between features at the level of latent discriminative features, and a linear 
neural network classifier is employed to distinguish fault types. The main contributions of this paper are as follows: 

(1) A clustering pseudo-label learning (CPLL) algorithm is proposed, which is dynamic and can update the pseudo-label with the 
number of iterations. The ablation experiment also shows that CPLL has a significant effect on improving the performance of the 
model. 

(2) Unlike many weakly supervised learning, this paper simulates a more rigorous engineering application: the number of labels 
available in the target domain is only one for each health state. 

(3) A domain adaptive function is designed based on LMMD and the proposed CPLL, which can effectively reduce intra class and 
inter class intervals, thereby reducing domain offset and improving model classification performance. 

(4) A cross device fault diagnosis method based on DTTN-CPLL is proposed, and the effectiveness and superiority of DTTN-CPLL are 
verified in four different device fault datasets. 

3. Problem definition 

In this paper, the mechanical fault diagnosis is studied under the following assumptions and definitions. 
(1) The source domain and target domain data come from different mechanical equipment, and the types of equipment being tested 

Fig. 1. The comparison of DTN methods and the proposed DTTN-CPLL framework. Using normal data and two types of fault data as examples, 
assuming the source domain Dh s

S and target domain data Dh t
T come from different machines, which Dh s

S ∈ P and Dh t
T ∈ Q, P ∕= Q indicate differences 

in data distribution. (a) Traditional DTN ignores exploring the underlying discriminative features of the target data, which may lead to suboptimal 
performance. (b) DTTN-CPLL considers the differences in the distribution of subdomain features and utilizes clustering pseudo-label learning al-
gorithms to implement the label propagation process, constraining potential discriminative features and greatly improving the diagnostic perfor-
mance of the model. 
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are not the same, resulting in differences in data distribution, such as different test environments, different structures, different speeds, 
or loads. 

(2) The source domain data labels are known, and a supervised classification model can be constructed. 
(3) Only a single data label is known for each health state in the target domain data, and the remaining data labels are unknown, so 

it is impossible to construct an effective classifier alone. 

Specifically, the source domain Dh s
S = {(x(i)

s , y(i)s )}
N
i=1 and the target domain Dh t

T = {(x(i)
t )}

M
i=1 are from different mechanical 

equipment, N, M are the number of samples in the source domain and the target domain, respectively, h_s, h_t are the corresponding 

number of health status. In addition, the labels of Dh s
S = {(x(i)s )}

N
i=1{(y

(i)
s )}

N
i=1 are known, and Dh t

T = {(x(i)t )}
M
i=1 has nt unlabeled samples 

and h_t labeled samples (wherent + h_t = M). Let P, Q be the feature discrepancy of Dh s
S and Dh t

T . Usually, affected by the difference in 
data distribution between different devices, domain shift P ∕= Q occurs, which makes unsupervised models unreliable. 

To this end, we propose a DTTN-CPLL model under the weakly supervised framework. Different from the traditional deep transfer 
network (DTN) model, DTTN-CPLL embeds CPLL and distance constraint (DC) algorithms to constrain the probability distribution of 
the target domain data, and propagates the label information to the unlabeled data in the target domain. Because this process is 
embedded in the iterative learning of neural networks, automation is achieved. The comparison of DTN and DTTN-CPLL is shown in 
Fig. 1. 

4. The proposed fault diagnosis framework 

In this section, the bearing fault diagnosis framework based on DTTN-CPLL is introduced. The core idea of DTTN-CPLL is to 
constrain the data in the target domain and propagate the limited labels to the entire data space to achieve the alignment of subdomain 
features, thereby completing cross-machines fault diagnosis from different device data. 

4.1. Deep targeted transfer network with clustering pseudo-label learning 

The proposed DTTN-CPLL model consists of feature extractor, classifier and four loss functions. Loss functions include classification 
loss, DC, LMMD, and CPLL. The feature extractor and classifier are twin neural network structures, and the detailed structural pa-
rameters are shown in Table 1. The feature extractor automatically extracts highly abstract low-dimensional feature data, and the 
classifier predicts the health category corresponding to the data. 

Under the constraint of multiple loss functions, the weight and bias are adjusted through the back propagation algorithm. Spe-
cifically, supervised classification loss is used to fit the distribution of source domain data. The DC loss narrows the intra-class spacing 
and increases the inter-class spacing by enhancing the predictive discriminability of the target domain data. CPLL dynamically adjusts 
the clustering of target domain data and spreads limited labels to the entire target domain data. Finally, the data features are aligned in 
the subdomain with the LMMD. 

4.1.1. Feature extractor and classifier 
The feature extractor Gf is used to extract similar features. It consists of six layers of convolution and pooling structures, as shown in 

Table 1. For Conv-Pool-1, it is composed of 16 convolution kernels, each with a size of 64 × 1. The padding number is 1, BN is the 
abbreviation of batch normalization, ReLU is the nonlinear activation function, and Max-Pool is the maximum pooling. Other layers 
have the same meaning. 

The classifier Gc consists of two basic fully connected neural networks, of which No. Category is the number of fault states. For 
source domain data, using labeled supervised learning can ensure the separability between source domain data, thus improving the 
diagnostic accuracy. The process is realized by cross entropy loss function, and its expression is as follows: 

LC = E
(x(i)s ,y(i)s )∈Dh s

S
[− log(ŷ(n)

c )] = −
1
N

∑N

n=1

∑K

c=1
y(n)c log

exp
(

ŷ(n)
c

)

∑C
c̃=1exp

(
ŷ(n)

c̃

) (1)  

Table 1 
Structure parameters of DTTN.  

Networks Layers Operations 

Feature extractor Conv-Pool-1 Kernel 16-64 × 1, Stride 8, Padding 1; BN; ReLU; Max-Pool 2 × 1, Stride 2 
Conv-Pool-2 Kernel 32-3 × 1, Stride 1, Padding 1; BN; ReLU; Max-Pool 2 × 1, Stride 2 
Conv-Pool-3 Kernel 64-3 × 1, Stride 1, Padding 1; BN; ReLU; Max-Pool 2 × 1, Stride 2 
Conv-Pool-4 Kernel 64-3 × 1, Stride 1, Padding 1; BN; ReLU; Max-Pool 2 × 1, Stride 2 
Conv-Pool-5 Kernel 64-3 × 1, Stride 1, Padding 1; BN; ReLU; Max-Pool 2 × 1, Stride 2 
Conv-Pool-6 Kernel 1024-3 × 1, Stride 1,; BN; ReLU; Max-Pool 2 × 1, Stride 2  

Classifier Linear-1 Node: 256 
Linear-2 Node: No. category; Softmax  
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where, N is the number of samples, K is the category corresponding to the sample. y(n)c is a symbolic function. If the true category of 
sample n is c, take 1, otherwise take 0. ŷ(n)

c is the characteristic value of the n-th sample in FC at the c label. 

4.1.2. Distance constraint 
Most existing methods consider the display feature alignment of source domain and target domain data, ignoring the implicit 

alignment of models at the prediction level. Specifically, we can reduce the intra class distance indirectly by strengthening the dis-
criminability of the model prediction results. High discriminability corresponds to low uncertainty of prediction results, so Shannon 
entropy [31] is used to measure uncertainty, which is denoted as follows: 

H(Y) = −
1
B

∑B

i=1

∑C

j=1
Yi,jlog

(
Yi,j
)

(2)  

where, 
∑C

j=1Yi,j = 1∀i ∈ 1…B, Y ∈ R
B×C is the prediction result matrix, B is batch size of model input. Let C be the number of labels. 

Frobenius-norm of output matrix Y is as follows: 

‖Y‖F =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑B

i=1

∑C

j=1

⃒
⃒Yi,j

⃒
⃒2

√
√
√
√ ⩽

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑B

i=1

(
∑C

j=1
Yi,j

)

⋅

(
∑C

j=1
Yi,j

)√
√
√
√ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑B

i=1
1 ⋅ 1

√
√
√
√ =

̅̅̅
B

√
(3) 

According to [32], the monotonicity of ‖Y‖F and H(Y) is opposite. Therefore, maximizing ‖Y‖F is equivalent to minimizing H(Y). 
Thus, we can maximize ‖Y‖F to enhance the discriminability. In [33,34], the Frobenius-norm ‖Y‖F and the nuclear-norm ‖Y‖⊙ have the 
following relationship: 

1̅
̅̅̅
D

√ ‖Y‖⊙⩽‖Y‖F⩽‖Y‖⊙⩽
̅̅̅̅
D

√
⋅ ‖Y‖F (4)  

where, D = min(B,C). And (14) shows that ‖Y‖⊙ tends to be larger with the increase of ‖Y‖F. So we can use the nuclear-norm ‖Y‖⊙ to 
enhance prediction discriminability. The nuclear norm can express the diversity of the prediction results of the model [32]. Based on 
the above analysis, the distance constraint loss function is denoted as follows: 

LDC = −
1
B
‖Y‖⊙ (5)  

where, ‖Y‖⊙ is the nuclear-norm of the model prediction matrix. 

4.1.3. Clustering pseudo-label learning (CPLL) 
For the case where each health state in the target domain data has only a single label, we propose a new pseudo-label learning 

algorithm, which consists of five steps. 

Fig. 2. Illustration of CPLL. Assume that there are two fault type data, namely unidentified normal and unidentified fault 2. First, obtain the output 
features t - SNE(GLinear− 1

c (Gf (xt))epoch) through Step 1 and Step 2, then perform Step 3 ((a) Density clustering in 2D space) to obtain l category data, 
and use Step 4 ((b) Positioning anchor data) to obtain the anchor point in the target domain. Finally, the labels of each category are obtained 
through Step 5 ((c) Pseudo-label learning). 
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Step 1: The output result of target domain data Dh t
T = {(x(i)

t )}
M
i=1 through the feature extractor Gf is GLinear− 1

c (Gf (xt))epoch. epoch is 
the iteration number of model training. 

Step 2: Data dimensionality reduction based on t-distributed stochastic neighbor embedding (t-SNE): t - SNE(GLinear− 1
c (Gf (xt))epoch), 

The algorithm principle can refer to [35]. 
Step 3: Density based clustering: Randomly select a point in t - SNE(Gf (xt)epoch), take the point as the origin, and establish a 

neighborhood with a radius of ε. If the amount of data in the neighborhood is greater than or equal to MinPts, then the points in the 
neighborhood form a cluster, and then recurse the points in the neighborhood in the same way to form a cluster. Use the same method 
to process the data in t - SNE(Gf (xt)epoch) that has not been analyzed to form l cluster. 

Step 4: Set anchor point: set corresponding anchor points according to h_t labeled samples in the target domain. 

Step 5: Pseudo-label learning: determine the label type in each cluster according to the position of anchor {(x(i)t )}
h t
i=1 in κ cluster. 

Fig. 2 shows the algorithm concept diagram of CPLL. Algorithm 1 is the pseudo code of CPLL. The target domain data is supervised 
by using the pseudo-label learned above. The pseudo-label loss function is defined as follows: 

LCPLL = −
1
M
∑M

j=1

∑C

m=1
p
(

ŷt
j = m

⃒
⃒
⃒xt

j

)
logp

(
ŷt

j = m
⃒
⃒
⃒xt

j

)
(6)  

Where ŷt
j is the pseudo-label of the j-th target sample calculated by CPLL. 

4.1.4. Local maximum mean discrepancy (LMMD) 
Although CPLL can solve the problem that the data distribution in the target domain is difficult to fit, to achieve feature alignment 

based on the subdomain, we need to train the model under the driving of the subdomain adaptive. To this end, LMMD algorithm is 
introduced. Its principle is as follows. 

dH (p, q) ≜ Ec
⃦
⃦Ep(c) [ϕ(xs) ] − Eq(c) [ϕ(xt) ]

⃦
⃦2

H
(7)  

where xs and xt are the samples in source domain and target domain. p(c) and q(c) are the distributions of Dh s
S and Dh s

T , respectively. Let 
wc

i be the weight of each sample belonging to each category. (7) can be rewritten as (8). 

LLMMD =
1
K
∑K

c=1

⃦
⃦
⃦
⃦
⃦
⃦

∑

xi∈D s
s

wsc
i ϕ
(
xs

i

)
−
∑

x′
j∈D t

wtc
j ϕ
(

xt
j

)
⃦
⃦
⃦
⃦
⃦
⃦

2

H

(8)  

Since 
∑N

i=1wsc
i and 

∑M
i=1wtc

i are both equal to one, 
∑

xi∈D s
s
wc

i ϕ(xi) is the weighted sum of category c. And the calculation formula of wc
i is 

as follows. 

wc
i =

yic
∑(

xj, yj
)
∈ D

yjc
(9)  

where yic is the c-th label of vector yi. LMMD is embedded in the output layer of the feature extractor Gf . Therefore, the LMMD loss 
function is calculated as follows: 

LLMMD =

1
C
∑C

c=1

[
∑ns

i=1

∑ns

j=1
wsc

i wsc
j k
(

GLinear− 1
c

(
Gf
(
xs

i

) )
,GLinear− 1

c

(
Gf

(
xt

j

)))

+
∑nt

i=1

∑nt

j=1
wtc

i wtc
j k
(

GLinear− 1
c

(
Gf
(
xs

i

) )
,GLinear− 1

c

(
Gf

(
xt

j

)))

− 2
∑ns

i=1

∑nt

j=1
wsc

i wtc
j k
(

GLinear− 1
c

(
Gf
(
xs

i

) )
,GLinear− 1

c

(
Gf

(
xt

j

)))
]

(10)  

where Gf
(
xs

i
)

and Gf

(
xt

j

)
are the output value of Gf .GLinear− 1

c ( • ) is the output value of the first linear layer of the classifier.  

Algorithm 1: Clustering Pseudo-label Learning (CPLL) 

Input: 
-Dataset D = t - SNE(GLinear− 1

c (Gf (xt))epoch) which containing h_t labeled samples 
-MinPts: the threshold of field density. 
-Radius ε. 

(continued on next page) 
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(continued ) 

Algorithm 1: Clustering Pseudo-label Learning (CPLL) 

Output: The labeled dataset Dh t
T 

1: Mark all samples in D as unvisited data 
2: Do 
3: Randomly select a sample p from the unvisited data. M is the number of samples in field p-ε. ϕ is a collection within the field p-ε. 
4: if M ≥ MinPts 
5: Create l-th cluster Cl, and put p into Cl. 
6: for p′ in ϕ do 
7: if p′ is unvisited 
8: Mark p′ as a visited data. 
9: if the number of p′-ε ≥ MinPts 
10: Put the samples in the field p′-ε into ϕ. 
11: if p′ ∕∈ C 
12: Put p′ into Cl. 
13: end for 
14: Output Cl 
15: else p is noise 
16: until there are no unvisited samples in D. 

17: dh t
T = {(x(i)

t )}
h t
i=1 

18: Dh t
T = {(x(i)

t )}
M
i=1 ∼ (Cl)

h t
l=1  

4.2. Training process 

The proposed fault diagnosis method is shown in Fig. 3. The overall loss function of the DTTN-CPLL model is as follows: 

LTotal = LC +αLCPLL + β(LDC + LLMMD) (11) 

where α is the weight coefficient with a variable value, and its calculation equation is as follows. 

β =
2

1 + exp(− 10 × q/Q)
− 1 (12) 

where q is the number of model training iterations and Q is the total number of training iterations. 
Let θf and θc are the parameters of the feature extractor and classifier. In the process of DTTN-CPLL model training, the back 

propagation algorithm is used to update the model parameters. The formula is as follows: 

θf = θf − λ
∂LTotal

∂θf
(13) 

Fig. 3. Illustration of the proposed fault diagnosis method.  
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θc = θc − λ
∂LTotal

∂θc
(14) 

where ∂ represents the partial derivative operator and λ denotes the learning rate. And the pseudocode of the DTTN-CPLL model 
training process is shown in Algorithm 2. 

5. Experiments 

5.1. Dataset description 

We evaluated the performance of DTTN-CPLL in 12 fault diagnosis tasks on four mechanical equipment, including Case Western 
Reserve University (CWRU) dataset [36] for dataset A, dataset B comes from Intelligent Maintenance System (IMS) [37], dataset C 
comes from DataCastle [38], and dataset D comes from Beijing Jiaotong University (BJTU). For each dataset, there are 1000 samples in 
each health state, and a total of 4000 samples., And the length of each sample is 2400. 50 % of them are training sets. The details of the 
above dataset are as follows.  

Algorithm 2: The training process for the proposed DTTN-CPLL 

Input: 
-Initial feature extractor Gf and a classifier Gc. 

-The source domain Dh s
S = {(x(i)

s , y(i)s )}
N
i=1 and the target domain Dh t

T = {(x(i)
t )}

M
i=1 after fast Fourier transform (FFT). 

-Learning rate λ = 0.02, batchsize = 64, epoch = 200, α = 0.6 and Ranger optimizer. 
1: for epoch do 
2: Calculate the classification loss using (1). 
3: Calculate the distance constraint loss using (5). 
4: Calculate the pseudo-label loss with (6). 
5: Calculate the subdomain adaptive loss with (10). 
6: Obtain the overall objective with (11). 
7: Train and update model parameters with (13) and (14). 
8: end for 
9: Output: The DTTN-CPLL model with trained parameters. 

Fig. 4. The test rig of the (a) CWRU, (b) IMS and (c) BJTU dataset.  
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(1) CWRU datasets: CWRU datasets [39] that were collected under constant speed are utilized for analysis. The sampling frequency at 
the driving end is 12 kHz. Its test rig is shown in Fig. 4(a). There are four health states: including normal condition (NC), outer race 
faults (OF), inner race faults (IF), roller faults (RF). The data are obtained at 1750 rpm. 

(2) IMS datasets refer to the life cycle data from the Center for Intelligent Maintenance Systems. Its test rig is shown in Fig. 4(b). 
The sampling frequency is 20 kHz. Similar to [25], we have built dataset B. There are four health states: NC, OF, IF, and RF. 

(3) DataCastle datasets come from the global developer competition [38]. However, this data has no details, only labels and data. 
Similarly, we use four health states (NC, OF, IF, RF) to create datasets. 

(4) BJTU datasets: We use the BJTU dataset which were collected under constant speed to test the performance of the method 
proposed, and the experiments are conducted using the high-speed EMU traction motor bearing test bench from BJTU, as shown in 
Fig. 4(c). The bearing failure points are made by wire cutting. The sampling frequency is 100 kHz, and there are four health states: NC, 
OF, IF, and BF. The details of the dataset are summarized in Table 2. 

5.2. Approaches for comparison and implementation details 

To fully verify the superiority of the proposed method, we use the current advanced model for comparative analysis, as follows:  

(1) The CNN model consists of feature extractor and classifier in Table I. And only the label data in the source domain is supervised, 
and the trained model is used to test the test set, that is, there is no domain adaptive loss function.  

(2) The domain adversarial neural network (DANN) [27] adds an additional domain discriminator on the basic CNN, and DANN can 
map the source domain and target domain data features to the same feature space.  

(3) DCTLN is an unsupervised cross-machines fault diagnosis model. We use the model in the literature [25] to compare with the 
proposed method.  

(4) DASAN [26] is also an unsupervised fault diagnosis model, which is consistent with the super parameter equipment and 
literature.  

(5) Joint distribution alignment (JDA) [40]: The JDA model is a joint distribution adaptation model proposed by Han et al. It is used 
in cross-machine fault diagnosis tasks later in this paper. The parameters and model configurations are consistent with the 
original paper.  

(6) DDTLN [41]: DDTLN is a recently proposed domain adaptation model for cross-machine tasks that improves the conditional 
distribution alignment mechanism.  

(7) DCTLN + weak supervision learning (WSL) is based on DCTLN and uses the labeled data existing in the target domain to do 
weak supervision training.  

(8) DASAN + WSL is based on DASAN and uses the tag data existing in the target domain for weak supervision training. 

5.3. Results 

To verify the superiority of the proposed method in cross equipment bearing fault diagnosis, we conducted cross validation on the 
four datasets mentioned above. There are 12 fault diagnosis tasks in total. The fault diagnosis accuracy of the proposed method and 

Table 2 
Bearing dataset details.  

Datasets Equipment Faults Labels Working conditions 

A Motor bearing Normal NC 1750 r/min 2 HP   
Outer OF 1750 r/min 2 HP   
Inner IF 1750 r/min 2 HP   
Roller RF 1750 r/min 2 HP  

B Shaft support bearing Normal NC 2000 r/min 26.6 kN   
Outer OF 2000 r/min 26.6 kN   
Inner IF 2000 r/min 26.6 kN   
Roller RF 2000 r/min 26.6 kN  

C Bearing Normal NC Unknown [38]   
Outer OF Unknown [38]   
Inner IF Unknown [38]   
Roller RF Unknown [38]  

D Traction motor bearing Normal NC 2873 r/min 26.2 kN   
Outer OF 2873 r/min 30.9 kN   
Inner IF 2766 r/min 26.0 kN   
Roller RF 2765 r/min 25.7 kN  
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other six comparison methods in each task is shown in Table 3. 
The results in Table 3 show that the proposed method has the highest average diagnostic accuracy of 99.98 % across machines, and 

the worst performance is DANN (39.89 %) rather than the base-line CNN model (49.88 %). DCTLN and DASAN are advanced cross- 
machines models, and their accuracies are 41.60 % and 55.78 %, respectively. This is because unsupervised cross-machines fault 
diagnosis is difficult to fit the target domain data distribution. After considering weakly supervised learning, the diagnostic perfor-
mance of DCTLN + WSL and DASAN + WSL is greatly improved, which is 72.92 % and 92.32 % respectively. It is proved that weakly 
supervised learning can promote accuracy. It is worth noting that the diagnosis results of DTTN-CPLL fluctuate the least, which in-
dicates that DTTN-CPLL has strong generalization ability for different transfer tasks. Besides, Fig. 5 is the histogram of experimental 
results of all methods. 

In addition, in order to intuitively see the ability of the proposed method in subdomain feature alignment, we use t-SNE algorithm 
to visually analyze A → B task. The results are shown in Fig. 6. The data points are derived from the data features after domain adaptive 
analysis of each method. Specifically, the output features of the source domain and target domain data after passing through the 
feature extractor and Linear-1 in the classifier are discrete points in the figure. It can be seen that DANN, DCTLN and DASAN do not 
align the source domain and target domain data well, and the same features between different domains cannot be aggregated into the 
same subdomain space. DCTLN + WSL and DASAN + WSL can aggregate data in the target domain, which is the result of weakly 
supervised learning. Under the joint action of CPLL, DC, and LMMD, the proposed DTTN-CPLL aligns the same fault features in the 
source domain and target domain, and achieves better fault diagnosis results. 

5.4. Analysis and discussion 

5.4.1. Parameters sensitivity of loss function weight 
To determine the optimal loss function weight parameter, we have done parameters sensitivity experiments. For (11), the α value is 

0 to 1 with an interval of 0.1. The across-machines diagnosis results under 11 parameters are shown in Fig. 7. It can be seen that the 
proposed method has the best effect in all diagnostic tasks when α = 0.6. 

5.4.2. Parameters sensitivity for CPLL 
In this section, the sensitivity of two parameters of CPLL is analyzed. Specifically, the value range of Radius is: [0.5, 1, 5, 10, 20], 

MinPts range: [1,2,5,8,10]. We use the grid search method to select appropriate parameter values. For task A → B, the impact of each 
parameter combination on the final diagnosis accuracy is shown in Fig. 8. It can be seen that the diagnosis effect of the model is optimal 
when Radius = 10 and MinPts = 2. 

5.4.3. Ablation study 
In order to prove the necessity of the existence of each loss function in the proposed model, we carried out ablation tests, namely 

none LCPLL(without (w/o)LCPLL), none LDC(w/o LDC), none LLMMD (w/o LLMMD). The results in Table 4 show that no matter which loss 
function is deleted under the 12 tasks, the results will be affected. Importantly, deletion LCPLL has the greatest impact on the diagnostic 
accuracy, which fully proves the effectiveness of the proposed CPLL algorithm. 

5.4.4. The effect of the loss function combination selection 
To select the best combination of loss functions, all combinations are listed, as shown in Table 5. Cross-machine fault diagnosis 

research is carried out for the loss functions under eight combinations. The results are shown in Fig. 9. It can be seen that the proposed 
method (combination 1) has the highest diagnostic accuracy and the best robustness in all transfer tasks. 

5.4.5. Performance of subdomain feature alignment 
The performance of the proposed method in subdomain feature alignment is evaluated quantitatively. For A → B tasks, we use intra 

class spacing to measure the degree of aggregation of the same label data in the target domain. The calculation formula of intra class 

Table 3 
Diagnosis accuracy of the proposed method and other compared methods.  

tasks CNN DANN DCTLN DASAN JDA DDTLN DCTLN + WSL DASAN + WSL DTTN-CPLL 

A → B 49.68 % 49.95 % 25.00 % 25.00 % 25.10 % 42.20 % 47.70 % 89.95 % 99.95 % 
A → C 27.75 % 25.00 % 50.00 % 50.45 % 50.00 % 43.75 % 68.25 % 99.75 % 99.90 % 
A → D 64.95 % 51.95 % 100.00 % 100.00 % 100.00 % 98.00 % 100.00 % 100.00 % 100.00 % 
B → A 46.50 % 25.00 % 13.95 % 24.35 % 25.00 % 39.05 % 72.70 % 99.60 % 100.00 % 
B → C 66.30 % 50.05 % 31.10 % 50.00 % 50.00 % 64.75 % 65.05 % 100.00 % 100.00 % 
B → D 25.00 % 25.00 % 24.65 % 1.50 % 25.00 % 41.45 % 25.00 % 99.50 % 100.00 % 
C → A 50.00 % 50.00 % 50.20 % 50.00 % 52.55 % 50.85 % 75.00 % 89.40 % 100.00 % 
C → B 43.10 % 25.40 % 25.00 % 31.20 % 25.00 % 47.35 % 50.85 % 75.00 % 100.00 % 
C → D 50.00 % 50.00 % 50.00 % 56.20 % 53.85 % 50.35 % 57.25 % 100.00 % 100.00 % 
D → A 98.30 % 60.80 % 50.00 % 100.00 % 100.00 % 99.85 % 100.00 % 100.00 % 100.00 % 
D → B 35.50 % 35.80 % 29.25 % 50.00 % 50.00 % 47.60 % 49.60 % 100.00 % 99.95 % 
D → C 41.45 % 29.75 % 50.00 % 50.00 % 26.50 % 60.55 % 75.00 % 100.00 % 100.00 % 
Average 49.88 % 39.89 % 41.60 % 49.06 % 48.58 % 57.15 % 65.53 % 96.10 % 99.98 %  
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spacing is as follows. 

dwithin = d2(Ωi) =
1

NiNi

∑Ni

k=1

∑Ni

l=1
d2
(

X(i)
k ,X(i)

l

)
(15) 

X(i)
1 ,X(i)

2 ⋯X(i)
Ni 

is the sample in Ωi. Ni is the number of samples in the category. There are four health states, so i = 4. The box plot of 

Fig. 5. The fault diagnosis results of all approaches.  

Fig. 6. Visual results for different methods using t-SNE: (a) DANN. (b) DCTLN. (c) DASAN. (d) JDA. (e) DDTLN. (f) DCTLN + WSL. (g) DASAN +
WSL. (h) DTTN-CPLL. 
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Fig. 10 can be obtained through calculation. For the box corresponding to each method, each black point represents the intra class 
spacing of different health status data. In statistics, IQR is equal to the upper quartile minus the lower quartile. A-distance [35] 
measures the degree of separation of different fault data. It is defined as dA = 2(1 − 2ε), where, ε is the generalization error between 
two distributions. The smaller the value dA, the greater the difference between distributions. There are four health states in this paper, 
so for each method, there are four results, dA(NC→others), dA(OF→others), dA(IF→others), dA(RF→others), respectively, as shown in 
Fig. 11. For the box corresponding to each method, the four black dots indicate dA(NC→others), dA(OF→others), dA(IF→others), dA(RF→ 
others) separately. From the above results, we can see that DTTN-CPLL has the minimum distance between classes and within classes, 
which proves that it has superior effect on subdomain feature alignment. 

5.4.6. Statistical significance test 
By comprehensively comparing the performance of 9 methods under 12 across-machines fault diagnosis tasks, we use the critical 

difference (CD) algorithm to analyze, and the results are shown in Fig. 12. In the CD diagram, the smaller the value, the better the 
comprehensive performance. It can be seen that the proposed method DTTN-CPLL has the best effect. 

Fig. 7. Parameters sensitivity analysis for loss function weight.  

Fig. 8. Parameters sensitivity analysis for CPLL.  
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5.4.7. Calculation cost analysis 
To compare the computational costs of the proposed methods, the runtime for each fault diagnosis method on 12 tasks is sum-

marized in Table 6. It can be observed that JDA has the shortest computation time, while DCTLN + WSL has the longest runtime. This is 
a result influenced by both the structure of the transfer model itself and the size of the input data. In word, the computation time of the 
proposed DTTN-CPLL is not the shortest, but it exhibits the best diagnostic performance. 

5.4.8. Statistical analysis based on box plots 
The use of statistical tests is crucial to confirm whether the observed results extend beyond the range of random chance variations. 

We employed commonly used box plots in statistics to observe the distribution of data from the experimental results table (Table 3). 
The results are depicted in Fig. 13. Each box represents tasks where the diagnostic accuracy rankings of the method fall between the 
25th and 75th percentiles, reflecting the overall diagnostic performance of the analyzed method. The interquartile range (IQR) is equal 
to the upper quartile minus the lower quartile. Black dots indicate outliers deviating from the 1.5IQR range, reflecting the stability of 

Table 4 
Ablation test results.  

tasks w/o LCPLL w/o LDC w/o LLMMD DTTN-CPLL 

A → B  47.35 %  86.45 %  49.95 %  99.95 % 
A → C  52.25 %  100.00 %  100.00 %  99.90 % 
A → D  100.00 %  100.00 %  100.00 %  100.00 % 
B → A  50.00 %  100.00 %  100.00 %  100.00 % 
B → C  72.05 %  99.90 %  100.00 %  100.00 % 
B → D  26.30 %  100.00 %  100.00 %  100.00 % 
C → A  50.40 %  100.00 %  100.00 %  100.00 % 
C → B  63.40 %  54.65 %  98.25 %  100.00 % 
C → D  51.45 %  100.00 %  96.05 %  100.00 % 
D → A  59.75 %  100.00 %  100.00 %  100.00 % 
D → B  47.35 %  100.00 %  100.00 %  99.95 % 
D → C  55.05 %  100.00 %  80.40 %  100.00 % 
Average  56.28 %  95.08 %  93.72 %  99.98 %  

Table 5 
The loss function combination.  

Methods LCPLL LDC LLMMD 

1 (proposed) √ √ √ 
2 £ √ √ 
3 √ £ √ 
4 √ √ £

5 £ £ √ 
6 £ √ £

7 √ £ £

8 £ £ £

Fig. 9. The diagnostic results under different loss function combinations.  
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Fig. 10. Performance of DTTN-CPLL: Intra class spacing.  

Fig. 11. Performance of DTTN-CPLL: A-distance.  

Fig. 12. CD diagram based on accuracy.  

Table 6 
The time consumption of different models.  

Methods Time (s) Methods Time (s) 

CNN  4520.04 DDTLN 9505.64 
DANN  6054.61 DCTLN + WSL 22220.29 
DCTLN  21119.97 DASAN + WSL 22131.28 
DASAN  18922.15 DTTN-CPLL 9185.80 
JDA  1090.69 – –  

F. Lu et al.                                                                                                                                                                                                               



Mechanical Systems and Signal Processing 213 (2024) 111344

15

the method in 12 fault diagnosis tasks. From Fig. 13, it can be observed that the diagnostic accuracy and stability of the proposed 
DTTN-CPLL are the best. 

5.4.9. Advantages and disadvantages 
12 cross-machine transfer experiments have demonstrated the effectiveness of DTTN-CPLL. Its advantages can be summarized as 

follows:  

1) Based on the clustering concept, CPLL fits the distribution of target domain data very well, greatly enhancing the generalization 
ability in cross- machine tasks and expanding the model’s applicability.  

2) DTTN-CPLL enhances the cross-domain transfer learning ability at the subdomain feature level, allowing it to fully learn and utilize 
source domain knowledge. 

However, the proposed DTTN-CPLL also has drawbacks. Firstly, CPLL embeds clustering and iterative operations internally, 
resulting in significant time consumption for DTTN-CPLL. Secondly, if there are no labeled samples in the target domain, the model 
performs poorly. Finally, the proposed method is unable to identify fault types when the label types in the source and target domains do 
not match. In the future, we will explore methods based on the label assumption to replace single-label semi-supervised learning. For 
instance, the fault label template idea can replace a single fault label. 

6. Conclusion 

In this paper, a new model called DTTN-CPLL is proposed for mechanical fault diagnosis of across machines. DTTN-CPLL is 
composed of a feature extractor, a label classifier, and a loss function based on CPLL. It extracts common features from the source 
domain and target domain through the feature extractor, and then identifies fault states using the label classifier. The main conclusions 
are as follows. 

1) The CPLL algorithm, driven by the single fault label in the target domain, successfully demonstrates excellent dynamic charac-
teristics. Its unique label diffusion mechanism enables the model to accurately adapt to changes in the target domain data dis-
tribution, providing strong support for the dynamic adaptability in practical mechanical fault diagnosis. This feature allows DTTN- 
CPLL to exhibit more precise and flexible characteristics when dealing with different machine fault features.  

2) Through the utilization of intra-class and inter-class distance metrics, we quantitatively verified the significant advantages of 
DTTN-CPLL in terms of subdomain feature alignment. By quantifying distance metrics, the model can more accurately adjust the 
feature differences between the source domain and the target domain, thereby enhancing the ability to capture fault features in the 
target domain. This provides a reliable theoretical foundation for the accuracy and robustness of the model.  

3) After conducting cross-validation on 12 transfer tasks across four different fault datasets, the experimental results clearly 
demonstrate the superiority of the DTTN-CPLL method compared to the current state-of-the-art methods. This indicates the gen-
erality and robustness across different machines, providing strong support for its widespread application in practical engineering 
scenarios. 

Although the proposed method has achieved significant performance improvement, we also fully recognize the substantial 
computational time consumption of DTTN-CPLL. Therefore, in future research, we will focus on addressing the computational effi-
ciency issues during the model iteration process of CPLL. A feasible exploration direction is to introduce Monte Carlo algorithms to 
optimize the computation process of CPLL, aiming to reduce computational costs and enhance the real-time performance and oper-
ability of the model. This effort will provide more concrete and practical solutions for the engineering application of DTTN-CPLL, 
making it more suitable for practical production environments in mechanical fault diagnosis. 

Fig. 13. Box plots corresponding to Table 3.  
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